Netflix前传:上市失败,泡沫裁员,CEO如何走过生死边缘
Netflix作为戏剧化的2000年互联网泡沫亲历者,纳斯达克在公司首次提交上市材料时开始狂泻不止,是什么帮助公司走过第一次的“至暗时刻”?又是什么,造就了今天为人们所津津乐道的独一无二的企业文化?
今天,让我们回到Netflix成立之初,一步一步回溯Netfilx的创办和发展历程,挖掘更多关于哈斯廷斯与公司的故事,尝试回答这些隐藏在这家传奇公司背后的疑问。
答案或许是:哈斯廷斯穿越周期的远见能力,贯穿始终的长期思维,关键时刻的决断能力,以及不断迭代的进化路径。
在浩繁的资料梳理过程中,我尝试把创始人对企业经营的方法论抽象成一个模型,以便更清晰地提炼有效的信息。
作为Netflix系列文章的开篇之作,本文主要聚焦于公司2002年上市之前的这段历程,也就是第一次危机化解前的时间段,尝试挖掘重要的输入事件与输出反馈,溯源创始人与企业的成长基因。
码农到CEO的自我进化
或许是继承了曾外祖父的基因,哈斯廷斯痴迷于数学的抽象之美,在大学期间主修数学并且数次获得最高荣誉。
出于对教育的热爱以及不畏冒险的精神,毕业后哈斯廷斯前往贫穷偏远的南非小国任教,在电力都没有普及的国家,用两年多时间为800多名学生教授了高中数学。
在如今Netflix的企业文化中,企业被形容成专业的球队,而非家庭,只招聘A级员工。这对很多人而言,第一时间可能很难接受。只追求高绩效的人才和结果,似乎是一种没有人文关怀的企业文化。
Netflix作为一家千亿美金市值的公司,2018年营收158亿美元,员工人数只有7100人,而估值相当的迪士尼,2018年营收594亿美元,员工人数,20万。
ARPE(Average revenue per employee)
AMVPE(Average market value per employee)
当然两家公司商业模式不同,仅仅只看这个指标会存在很大偏差,这里只是做一个直观对比
如此极致的企业文化或许最早可以追溯到哈斯廷斯在Adaptive公司时的经历。当时哈斯廷斯是全公司最勤奋的一名码农,在公司最早到最晚走,喝过的咖啡杯从没有洗过,在他的理解中,一直是有保洁在清洗。
由于公司只注重产品开发,没有重视销售,即便是拥有着绝佳的产品,最终也只售出了1份,并且客户最终也没有安装。
这次的经历对刚毕业的哈斯廷斯冲击很大,他认识到家庭文化不是必需品,公司的长久发展才是第一位的,才是对员工的负责。
1991年,时年31岁的哈斯廷斯创办了Pure Software,早期的产品是为程序员提供代码修正的服务。
1995年USA Today的报道封面,也是哈斯廷斯最想毁掉的照片
当外界给哈斯廷斯打上“成功”“财富”甚至“暴富”这些标签时,他没有沉浸在这些声音中。而是在反思为什么没有更成功,为什么公司最终会被最大的竞争对手收购。
而在管理上的最大失败,哈斯廷斯认为是过于注重程序化,以及随着公司成长带来的官僚主义。在Pure Software的时候,公司每次遇到问题,都会设置一套新的流程,防止相同的问题再次出现。
现在我们可以看到,在Netflix“自由与责任”的企业文化中,公司在流程上,在规章制度上,都有着极大的自由和颠覆性的实践。
哈斯廷斯在认知“失败”上做得尤为出色,并且能够迭代到实际的企业管理中。
认知失败的迭代的第一步,很多CEO在企业管理的过程中,容易出现“理性的自负”。在企业发展遇到问题时,不少创始人不承认不接受,最终的结果只能是影响长远的发展,所有人都付出更大的代价来为此买单。
硅谷明星的二次创业
1997年,在Pure Atria被Rational收购之后,哈斯廷斯和伦道夫一直在思考新的创业机会,尤其朝着在线电子商务的方向在进行探索。
广为流传的Netflix成立原因的版本是,哈斯廷斯由于逾期归还《阿波罗13号》而缴纳了40美金的滞纳金,由于难以向妻子交代因此在思考是否有更好的商业模式。
核心原因在于业务模型难以成立。当时视频存储的形式是笨重的VHS格式。库存成本和邮寄成本都太高,难以支撑业务模型。
哈斯廷斯的远见能力和决断力在这个时候得到了充分的体现。还在斯坦福攻读教育学位的他,在认定商业模型行得通之后,一直敦促伦道夫尽早把项目落地,并投入200万美元作为启动资金。
在确定公司的基础商业模型,即以“在线选择,线下邮寄”的形式提供DVD影片的租赁服务,哈斯廷斯和伦道夫开始召集人马,启动项目。
终于,1998年4月14日,在公司成立1年之后,Netflix正式上线了。
在上线之前,公司针对有DVD播放机的一批人进行了市场测试,招募了几十位有影响力的人物进行尝试。这些人都是新兴技术的爱好者,有着重度垂直的交流社区,Netflix网站上线后在社区内进行了初次的传播。
在上线当日,订单人数远超预期,服务器和订单打印机都连续罢工,到傍晚已经超过100份订单,光盘发货数量超过500张。
DVD格式的快速普及印证了哈斯廷斯的预判,并以远高于VHS格式录像机的速度在渗透。
1997年3月DVD播放机在美国上市,在半年内售出40万台。1998年,播放机的价格迅速下跌,到Netflix上线时,平均价格几乎下降了一半,到了580美元。
随着DVD格式的逐步普及,影视公司也逐渐接受了这种新格式,并以每月100部的速度发行DVD影片。到了1998年夏天,Netflix库房里的影片数量攀升至1500部。
而传统线下店由于历史原因,拒绝在门店提供DVD格式的影片,拱手将这一领域送给了Netflix。这一切原来的不利因素都变成了当时最好的机会。由于在整个行业没有直接的竞争者,公司得以在初创时期野蛮成长。
1999年1月,哈斯廷斯在政治上受挫后从TechNet辞职,把主要精力放在新的创业公司上。在创办初期,哈斯廷斯与伦道夫一直保持着密切的交流,但是很少出现在公司,因此员工对哈斯廷斯并不熟悉。
哈斯廷斯和伦道夫就像是理性与感性的两个极端,早期被伦道夫吸引的员工崇尚的是创意的家庭文化,而哈斯廷斯则把公司比作专业球队,球员只能靠工作业绩赢得上场时间。
逐渐地,公司聚集的都是符合哈斯廷斯标准的人,尤其对于工程师而言,哈斯廷斯充满了魅力,是一位可以吸引来绝顶聪明的人,让他们展开相互竞争的老板。
1998年底,联席执行官并行的管理结束,哈斯廷斯成为董事长、首席执行官兼总裁。伦道夫降职为总裁,并在次年降职为执行制作人。
基尔戈上任之后重新规划了Netflix的营销方案,包括把Logo调整为我们现在所熟悉的大荧幕红色背景。她得到了哈斯廷斯极度的重用,哈斯廷斯甚至在一次董事会上表示,基尔戈将会是公司的继任者。
这些人际关系的处理在哈斯廷斯的脑海中或许也可以用数学方程来解决。我们可以尝试理解这样的模型,从公司长期收益的角度计算的公式,符合标准的被重用,并且随着时间的变化动态调整。
2000年首次上市失败
哈斯廷斯逐步完成对团队的掌控后,在商业模式上也在进行持续的探索和迭代。
起步的业务模式和线下的百视达方式类似,但在内容选择上,与线下店相比,公司可以提供更多的选择。收费方式上,按片收费,有一定的租赁期限。
为了吸引用户复购,公司在商业模式上进行了新的尝试。包括在用户内容选择上,加入了算法推荐的内容,同时有队列功能,即用户把想看的影片添加在队列中,在原影片归还之后,队列内的内容会被自动发出,实现连续交付。
另外,在收费方式上,由于哈斯廷斯从最初就对百视达的滞纳金痛恶至极,因此取消了按片付费,逾期有滞纳金的方式,尝试了按月订阅。
这些新的尝试被称作“天幕”计划,哈斯廷斯坚持同步上线这些功能,并在一部分用户中进行测试。这一选择很快得到了市场的回馈:“天幕”方案使得网站业务量在3个月翻了3倍,每周光盘出货量到了10万张。
“这似乎是一个重大的冒险步骤,而且没人知道它是否管用。”当时团队中的反对成员多年后回忆到。
再一次,哈斯廷斯显示了他的远见能力和决断力,把资源全部集中在他认定行得通的模式上,即便这是建立在不完整的数据和直觉之上。
从公司中人员结构看,这家硅谷公司的程序员比例很高,Netflix从一开始就对数据的应用有着执着的追求和不懈的尝试。
首先从内容推荐看,最初为了控制DVD内容的采购成本以及优化库存的分配,Netflix在网站中上线了最早的推荐功能,对非热门影片,但是用户可能感兴趣的老电影进行推荐。
哈斯廷斯对数学是如此着迷,而将人类行为和喜好归纳到一种算法的方式是如此地优雅,在算法范围内囊括对如此多无序因素的挑战对他而言,充满着巨大的吸引力。
从推出之日开始,哈斯廷斯便要求公司的程序员与数学家配合,不断地对算法进行优化,自己也会亲自参与调整。对于这一匹配算法的痴迷,占据了他的闲暇时间,甚至圣诞节都在亲自迭代优化。
随着用户打分的数据积累越多,推荐系统就会变得越精准,逐步可以达到千人千面的效果。但推荐准确率在2006年达到了团队的瓶颈。
在公司商业模式不断迭代的过程中,公司也在持续在亏损,早期的资金储备很快就要弹尽粮绝。公司在1998年与1999年累计收入600多万美元,累计亏损4130万美元,短时间内还没有看到盈利的希望。
2000年初,公司董事会认为上市的时机已经成熟。纳斯达克在2000年的3月10日疯狂地攀升到了当时历史上也是之后15年的最高点,5000余点。
Netflix在2000年4月18首次提交了招股书,材料上还带着泡沫破灭前夕被狂热追捧的.com域名。
而这仅仅只是开始。2001年9·11事件对股市而言又是一次沉重的打击,硅谷从20世纪90年代的狂热淘金潮开始全面进入持续的破产潮。
首发失败后的Netflix面临着史上第一次重大危机。目前的租赁业务在持续的亏损。热潮退却,华尔街对这些持续亏损的前缀e或者后缀.com的科技公司不再狂热,取而代之的为期数年的避而远之。
哈斯廷斯开始考虑与百视达的合作以求生存。他提供了两种方案,一是业务合作。Netflix专注老电影和小众电影,百视达运营新发行的影片,在每家百视达连锁店内放入Netflix的宣传资料,并支付一定的费用。
第二种方案,卖身百视达。哈斯廷斯建议百视达以5000万美元的金额收购Netflix。
对十年后申请的破产百视达而言,这或许是历史上最致命的一次错误。这家昔日被嘲讽轻视的“小公司”将逐渐成长为吞噬自己的巨蟒,成为了一头由自己亲手放任生长的野兽。
2001年夏天,公司已经拥有接近1万部的DVD影片,是百视达最大门店影片数量的10余倍。美国DVD播放机的渗透率也在急速上升,截至2001年底,已经进入接近2500万的家庭。
DVD格式的普及速度之快,以及Netflix在这一市场的深耕,虽然基数小,但是用户增长速度对公司而言还是相对乐观。最重要的问题在于现金流,公司在运营上持续属于烧钱状态,在资本寒冬下,必须大幅削减成本。
2001年底,公司订阅用户数从2000年的29万上升至45.6万,2002年第一季度达到了60万。同时在公司在2001年底时,首次实现了正向的运营现金流。
附模型说明: (1)核心在于迭代的逻辑,模型本身没有任何具体方法论的指导意义。模型内的变量不是固定的,上图中的几个变量只是一个示例,变量都可以调整。 (2)对于单个公司,这个模型可能会存在一定的生命周期,到了一定阶段,负面反馈的结果就是公司消亡。但是对于人而言,无论是经历企业生命周期的当事人亦或是旁观学习者,这样的终极负面反馈都是一个新的很好的输入。 例如哈斯廷斯第一家创业公司的成功与失败都是第二次创业非常宝贵的输入。 1、提取变量 第一步,需要有对输入和输出要素的认知,需要本质性地思考,经历事件和获取信息的时候,能够快速抽象出当中的要素到底是什么。 信息可以来自于自身经历与他人经验的学习,自身经历的机会成本毕竟很高,需要持续性学习他人经验。 所有的这些要素中,创始人对负面反馈的认知是非常难的一步。他人的成功与失败都可以评头论足,自身的成功也很容易被放大,但是认知到负面的反馈这一步对很多创始人来说并不容易,认识到并接受大小失败是迭代的前提。 例如哈斯廷斯对于第一家创业公司的失败,提炼的核心变量在于管理,而对于管理这一子模型,又可以进一步细分。 2、持续迭代 模型是动态的,没有标准答案。同一个企业的不同阶段,不同行业的企业,同一行业的不同企业,这个模型都不可能完全一致。 同时在大的模型中,每个变量也有自己的小模型。每个细分变量也会有各自领域的专家。例如房晟陶老师关于组织的模型,就有着非常深入的研究。 每个组成变量的模型,他们的拟合也是持续迭代的,互相之间也会有影响。如下图所示,再次说明,里面具体的变量都可以调整。 一如哈斯廷斯在持续优化的推荐算法一般,企业经营的模型也是在持续迭代的。需要不断地迭代尝试,但没有完美的模型。而要执行迭代的这个动作,需要“先干起来”。例如在最初选定是否全力执行“天幕”方案时,公司内争议很大,存在诸多不确定性,但是哈斯廷斯还是有决断力,愿意冒风险地全面推广了这一方案。 3、控制误差 控制误差的两个维度,一方面,超出误差范围模型失效,所以控制误差的目的是保证模型的有效性,也就是确保企业基本的生存(survive)问题。 另一方面,没有完美的解决方案,误差是避免不了的,在企业运营中,不可能等到研究出完美模型之后再往前推进。需要做的是持续地尝试和迭代,控制误差的范围,保证公司基本生存问题后进化扩张(thrive)。 需要注意的一点,“控制误差”是结果,而为了达到这样的结果,不代表企业在管理上需要极强的控制,这是两个不同维度的问题。管理中的控制,是在“人与组织”这个变量中需要明确的问题,以Netflix为例,崇尚的就是“Context not Control”。 首要是生存问题,在泡沫破灭,资本寒冬下,哈斯廷斯亲自裁员,力求生存。 4、优化模型 而迭代模型的最终结果是为了实现企业的愿景,长期的目标。不符合这一目的模型优化都是耍流氓。首先需要富有远见,确定正确的长期目标。其次是在迭代的过程中,以这一目标为结果。 每一个环节都有着巨大的考验。尤其在于,短期的成果反馈是及时的,长期的反馈是漫长的,过程中充满不确定性,而真正能做到以长期目标为输出结果,实践延迟满足感,才能跨越周期,树立长久的竞争力。 这一切优化的目的都是为了长期的生存。哈斯廷斯在Pure Software优化流程的目的是为了防止发生相同的错误,提高了短期效率,但是牺牲了长期的灵活性,最终被收购,这其实就是当时对优化模型的方向判断出现失误。而在Netflix经营中,这一点便是第一天哈斯廷斯就在考虑并执行的。