马斯克“独孤求败”的自动驾驶路径,与特斯拉的“无人出租车”
投资人体验特斯拉完全自动驾驶 |来源 Twitter@hamids
这个活动虽然主要面向投资者,但仍然有超过 4 万人通过直播视频远程观看。接近三个小时的发布,特斯拉在试图告诉现场的华尔街分析师们关于神经网络和计算机视觉的运作优势,希望向投资者解释清楚「为什么特斯拉不仅仅是一家汽车公司」。 引来极大争议的是,深信「第一性原理」的马斯克再次坚定的将视觉为主的全自动驾驶方案推上舞台,这与现阶段主流自动驾驶方案的使用高精度地图与激光雷达的方案相冲突,特斯拉再一次走上了一条孤独的路。这一次为了证明自己的路线,马斯克的言论中不乏颠覆整个行业的激烈观点。 本月早些时候,特斯拉宣布新的全自动驾驶(FSD)计算机已投入生产。首先马斯克与自动驾驶工程副总裁 Pete Bannon 一起登台详解 Autopilot Hardware 3.0 的配置。 今天正在制造的所有特斯拉汽车包括 Model 3/S/X 都拥有完全自动驾驶所需的硬件:8 个视觉摄像头,12 个超声波传感器,雷达,以及这款定制设计的全自动驾驶双冗余 FSD 计算机(共 72W)。 马斯克与自动驾驶工程副总裁 Pete Bannon | 直播截图 特斯拉新芯片上的神经网络加速器可以处理来自汽车 8 个不断运行的摄像头的每秒 2100 帧的输入图像。这相当于每秒 25 亿像素。这款马斯克口中「世界上最好的芯片」尺寸为 260 平方毫米,拥有 60 亿晶体管,具有双核神经网络阵列,每秒可运行 36 万亿次操作,采用 14 纳米工艺制造。与上一代 Tesla Autopilot 硬件(由 Nvidia 硬件驱动)相比,特斯拉声称每秒帧数处理能力提高了 21 倍。曾经负责苹果公司重要芯片项目的 Bannon 还表示,他从未参与过改善倍数超过 3 的项目。 与上一代 Tesla Autopilot 硬件(由 Nvidia 硬件驱动)相比 | 官方数据 Bannon 还解释说与 Autopilot 硬件 2.5 相比,每辆车的硬件成本降低约 20%。他说,主要差异在于为新硬件的开发付出的成本。 在每个全自动驾驶计算机主板实际上都配备了冗余的两个 FSD 芯片,以及冗余的电源,甚至是冗余计算,「系统会将两个处理器同时反馈给汽车之前的结果进行比较。」Bannon 说。 FSD (full self-driving computer)计算机芯片 | 直播截图 「任何一部分都可能失效,但汽车将继续行驶,」马斯克说。「这台计算机失败的可能性远低于失去意识的人,至少是低于一个数量级。」 「起初看起来似乎不太可能。特斯拉,以前从未设计过芯片,怎么会设计出世界上最好的芯片呢?但这是客观上发生的事情。」马斯克在 Bannon 完成演讲后得意的说。 为了训练神经网络,计算机需要将数千个例子输入系统,Karpathy 解释说:「相比虚拟仿真数据,真实世界的测试数据是无可替代的。」特斯拉声称,在使用硬件 2.0 的情况下,它有超过 425000 辆汽车在上传数据,供神经网络使用。 更重要的是,Andrej 称,现在的视觉为主的感知方案以及能够适应 99.999% 的场景。 「硬件都已经完成,需要做的就是改进软件」马斯克说。特斯拉工程副总裁 Stuart Bowers 制定了特斯拉的软件测试计划。 当「你感觉很好」时,Bowers 说,这个功能将会出现在一个受控制的部署中并发送给成千上万的人。使用新功能的人越多,特斯拉就越了解它的工作方式。最后,当公司对这个功能充满信心时,公司就会全面推送更新。 Bowers 表示,现在特斯拉每天都会看到 10 万次自动车道变换,并且是零事故。 马斯克表示,他「非常有信心」预测明年将推出 Robotaxi 计划。 特斯拉将不断开发和更新该软件,以满足年底前实现完全自动驾驶系统所需的所有功能。他强调说,目前版本系统仍然需要驾驶员保持注意力,并不能自动驾驶,但他预计到 2020 年第二季度它将不再需要驾驶员注意。 之后特斯拉将与监管机构合作,将系统批准为自动驾驶系统,不需要驾驶员监督。该时间表将取决于不同司法管辖区的监管机构,但马斯克表示,他相信它将在明年年底前至少在一个市场被许可。 特斯拉计划通过更新其现有的移动应用程序来启用其 Robotaxi 网约车服务网络。 在应用程序上,特斯拉车主将能够将他们的汽车添加到共享车队以赚钱或召唤一辆自动特斯拉车辆来接他们并将他们带到目的地。 马斯克表示,任何客户都可以在「特斯拉网络」中添加或删除他们的汽车,Robotaxi 更像是 Uber 和 Airbnb 之间的组合。与这些平台类似,特斯拉还将获得乘车费用产生的约 25-30%的收入。 更重要的是,马斯克希望未来在没有足够人分享汽车的地方,将有特斯拉的自动驾驶车辆来满足需求。 Twitter 网友推出的 Elon Musk 香水——「成功的味道」| 来源 Twitter 当然在所有发布之后,引来极大争议的是马斯克对于激光雷达的看法,深信「第一性原理」的马斯克再次坚定的将视觉为主的全自动驾驶方案推上舞台。 另一边像奥迪这样的汽车制造商以及像 Waymo 这样的科技公司甚至是很多自动驾驶创业公司,目前多数自动驾驶方案的主要参与者都在开发采用激光雷达传感器的原型,同时使用高精度地图。 Q1: 就特斯拉 FSD 芯片与英伟达 Xavier 的对比来看, 前者每秒的运算速率几乎是后者的 7 倍, 就这方面的表现, 如何向投资者具象地描述一下? Q2: 特斯拉为何放弃与英伟达的合作, 选择自研芯片的道路? Q3: 针对其他公司使用激光雷达进行自动驾驶测试, 特斯拉的看法是? Elon Musk: 至少要达到第一代 FSD 芯片三倍的性能。 Q5: FSD 肯定是要找第三方代工的, 那么它带来的成本减少占整车成本的多少? Peter Bannon: 20%。节省下来的成本可以抵消研发的支出。当我们提出要通过自研芯片来节省成本时, Elon 说「一年如果可以卖出上千万台车, 那这个是划算的」。 Q6: 深度神经网络是自研还是找第三方公司开发? Fabbing 又是找谁做的? Peter Bannon:是我们自己根据芯片定制开发的, 芯片是由三星代工的。 Q7: 我有些好奇, 从知识产权的角度出发, 你们的芯片和相关 IP 设计有着怎样的防抄袭的考虑? 你们肯定不会今后把芯片的 IP 也开放出去吧? Elon Musk: 可能 3 年后会有其他公司生产类似 FSD 的产品, 但两年内我们就会研发出比现在产品好 3 倍的新一代芯片。 我们的 FSD 芯片是很难被破解的。如果有人能够破解它, 甚至把神经网络, 软件等等其他重要的 IP 设计摸了个清, 那其实他们也完全可以自研芯片。 持此之外, 特斯拉的车队是我们强大的、能够可持续发展的优势。它好比谷歌的搜索引擎, 优势在于有大量的用户使用, 而它因为大量的使用会变得更强大。 Q8: 像 Waymo/Nvidia 在自动驾驶模拟上有着自己独特的优势。请问特斯拉是怎么看待在现实世界的测试和模拟测试积累的里程? Q10:特斯拉车队能够采集多大量级的数据? 冗余方面是如何考虑的? 如何进行神经网络的训练? Andrej Karpathy: 其实对训练神经网络有用的数据不是看量级, 而是看数据中不同的变量有多少。我们必须要选取那些有用的数据, 所以并不在乎搜集到了多大量级的数据。 至于冗余性, FSD 架构中包含了两枚特斯拉自研的芯片, 都有相应的冗余设计, 可以满足 L4/L5 自动驾驶应用。 Q13: 如何看待其他厂家使用激光雷达和高精度地图在限制区域进行的 Robotaxi 服务? Elon Musk: 激光雷达和高精度地图都是自动驾驶中错误的解决方案, 只会减慢自动驾驶商业化的速度。如果你只是在限制区域行驶, 那也不能叫做自动驾驶。 Q14: 目前你们的计划是使用 Model 3 实现 Robotaxi 服务, 那么 Semi 卡车和 Model Y 呢? 明年, 我们将把产品线扩充至 Model Y 和 Semi 卡车上。我们预计 Robotaxi 首次运营上线是在明年, 而其他公司恐怕明年都还没有吧?「世界上最好的芯片」
「学习」人类驾驶
能帮你「挣钱」的特斯拉
任何依赖激光雷达的人都注定失败?
发布会完整 Q&A