500纳米的“细胞工厂”,是下个千亿产业的孵化地?
文 | 秘丛丛
编辑 | 黄臻曜
在未来,谁能取代石油?实现DNA信息储存?还能治疗肥胖和糖尿病?
这个答案,可能是微生物。
微生物是相对冷清的航道。目前整个产业还只利用了微生物资源的1%左右,基本处于早期阶段。2015年成立的蓝晶微生物科技(以下简称“蓝晶”)已经切入这个赛道。
蓝晶最先选择的技术应用是环保领域,生产可降解塑料,用PHA解决白色污染。PHA(聚羟基烷酸酯)是一种100%生物基的生物可降解材料,主要用作一次性包装原料,能在1年内自然降解。而有些化学合成的塑料,需要300年才能有效降解,但其实人类发明塑料还不到100年。
蓝晶找到的这个发力点正好迎合了目前环保领域的重要趋势。谈及自身PHA产品的优势,蓝晶创始人兼CEO李腾表示,通过合成生物学技术对微生物做“编程”,精细化控制它们的行为,可以比国外量产的PHA 材料成本低30%。
就在不久前,李腾入选《麻省理工科技评论》“ 35 位35 岁以下科技创新青年“。他说:“我挺高兴的,感觉自己被看见了。我们做的东西有点太超前,得奖意味着这些科技先锋起码认可这个方向,就没那么孤独了。”李腾本科在清华读生物学,博士期间选择了合成生物学方向,这样的学科背景也是他选择在微生物领域创业的关键原因。
合成生物学被Technology Review评为未来改变世界的十大新兴技术之一。它不仅能在环保上大有作为,还在DNA信息存储、人造肉、生物燃油等方面颇有潜力,未来可能会颠覆信息、食品、能源等产业。
其实合成生物学很新,2006年才开始被学术界认为是成型的学科。它是一门综合学科,以传统生物学为基础,用工程学以及计算机科学改造原有的生物系统,以完成人类设想的各种任务。
蓝晶诞生的时间点比较幸运。虽然目前整个微生物产业还处于早期阶段,但在2013年进入爆发期。“在美国,微生物产业目前大概是2000亿美元的市场,2018年全球微生物领域的风投约38亿美元,比2017年增长了约一倍。”李腾说:“国外微生物科技公司数量居多,国内专攻微生物的企业目前只有两三家。”
图片来自 Pixabay
关于商业模式,目前国内外公司的做法有些不同。国外公司的商业化更成熟,主要依靠技术服务输出和专利盈利。“但国内的优势是产业链更全。”李腾说。所以蓝晶在商业模式上更偏向于提供垂直产品,例如蓝晶PHA产品目前的商业化途径主要两种:一是跨国企业如宝洁等快消品公司购入制作包装袋;二是加工商采购PHA原料,二次加工成可降解的包装袋、地膜或瓶子等。另外,蓝晶也开始走向规模化生产,预计明年上半年能实现产业化落地。
此外,蓝晶在2016年10月还推出了教育子品牌—蓝晶实验室,将基因编辑导入教育场景,帮助中学生完成科学实验项目。蓝晶CTO张浩千曾表示,蓝晶实验室带来了持续稳定的现金流。“我们计划将教育板块独立成子公司,探索近20亿元的生命科学教育市场份额。”张浩千说。就在2018年10月,深圳的一个高中生队伍利用蓝晶实验室,在大肠杆菌和酵母中合成猫薄荷的活性成分,取得了iGEM(国际基因工程机器大赛)高中组的全球总冠军,这项技术可应用于流浪猫的抓捕和救治。
和国内合成生物学的境况相比,美国这个领域的发展水涨船高,很多公司在做不同面向的应用。比如Ginkgo Bioworks公司,它用合成生物学创造很多世界上不存在的小分子物质,做全新的香水;而Zymergen公司,则是把合成生物学的技术和大数据结合起来。
但技术前景光明的背后,也可能暗藏危机。如果可以改造生物,就必然会涉及伦理道德问题,比如定制生命、制造超级细菌等。为了规避此类问题,李腾的建议是:“一是不做高等生物的试验,其次被修改的微生物释放到自然界,要经过严谨的审批流程。”强监管和自律或许是两把有效的“利剑”。
以下是访谈部分(经编辑):
蓝晶的微生物赛道:从PHA开始
:技术和应用技术可能是两回事。你是如何找到这些微生物的应用点的?
李腾:大多数情况下是有需求,然后去找技术,但是我们是有技术,然后去找需求。我们的技术创新和目前的存量应用找到了一些结合点。
微生物的应用主要分为四类:工业的微生物,如工业酒精、生物可降解材料、生物柴油、生物汽油等;医疗的微生物,如抗生素、胰岛素、活菌剂药等;环境的微生物,如微生物降解污水中的氮磷;农业的微生物,比如固氮菌帮助农作物固定氮而减少氮肥的使用,既保护环境也节省成本。其中医疗的微生物是一个比较新的概念,增长很快,但目前工业微生物的体量是最大的。
:现在蓝晶在业务上有哪些具体落地的场景?
李腾:我们做的第一个产品就是天然高分子材料PHA,微生物合成的大分子,它可以代替塑料。后来我们开始做精细化学品和植物的天然的代谢产物,比如天然的香料和色素、化妆品的添加剂像角鲨烷。之所以可以这样,是因为所有的生物其实都通用底层代码。比如人和大肠杆菌等微生物的的底层逻辑是一致的。
:一些可降解塑料需要在自然界达到一定的可降解条件才能真的降解,否则会破坏环境。蓝晶的PHA技术,有类似风险吗?
李腾:它的风险在于成本比较高,但从环境的角度考量,基本上是最完美的解决方案——首先它不需要利用石油,只需可再生的能源,其次在自然环境下就会降解,降解之后还可以为微生物提供能源,因为它本来就是微生物的储能物质。另外,有一个风险是:如果量大的话可能就存在和人争粮食的问题。因为可能它的原料是可再生的生物质原料,但我们用的原料基本都是非粮食的,比如说棕榈油。
:蓝晶的PHA产品成本比国外量产的PHA 材料低30% ,你们是如何降低成本的?
李腾:PHA的生产过程有两部分,一是微生物作为一个工厂,它一边吃食物一边积累PHA,另外是在工业条件下,把积累在细胞里的PHA拿出来。这两个过程的成本都可以降低,如果能给微生物做特别精细的控制——用合成生物学的方式做编程控制它的行为,比如可以让能量进来,只去合成PHA,或者合成PHA后它自己就把PHA释放了。微生物它可以一边自己造东西,一边复制。复制出来的也有同样的功能,也能造同样的产品,它的效率非常高。
图片来自蓝晶微生物官网
:蓝晶的官网上介绍合成生物学/合成生物技术就像是在细胞里写代码,借助工程学的理念对细胞进行局部优化。它的技术门槛在哪里?
李腾:其实和人工智能很像,有两个核心,一个是好算法,一个是好数据。核心是数据,微生物最终呈现的是一个非常复杂的网状网络状的结构,你放入一个东西,但你无法预测它跟周围的结构会怎么相互作用,所以大多数情况下是失败的。
我们在做的事是什么?我一边开发算法,一边积累足够的数据。生物的数据是很难获取的,因为变量特别多,而且获取周期很长,微生物大概需要两三周,植物可能需要一两年,人身上可能20年才获取一组数据。所以积累优秀、高量的数据就有很高的壁垒了。
:现在蓝晶的客户大概是哪些类型的公司?
李腾:主要有两类,一类是跨国企业,比如食品或者快消品企业,宝洁是我们的客户。它们可以用PHA制作可降解的包装袋,像食品或洗发水等的包装。
第二类是加工商,它们为商超或是品牌商供货,比如可降解的包装袋,降解地膜或可降解的瓶子。它们会找我们采购原料——PHA,我们会把PHA做成标准的加工原料,像米粒大小,加工商只需要进行物理操作。
:蓝晶以后还会拓展到哪些领域?
李腾:我们给自己定位为微生物公司,所有微生物会做的产业,都是我们辐射的方向。相当于我们是微生物赋能的公司,我们的赋能是用数据的方式,把DNA上的信息抽象成数据,然后用这些数据更好地设计或改造一个微生物。